Part Number Hot Search : 
C032MR IRFZ34 ISD2532X MCR8D PCK111BD 40128 0402CBBV C032MR
Product Description
Full Text Search
 

To Download IRFI4110GPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  01/11/11 benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free  halogen-free www.irf.com 1 IRFI4110GPBF hexfet   power mosfet applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits s d g gds gate drain source d s d g to-220ab full-pak pd - 96347 absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, vgs @ 10v (silicon limited) a i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) sin g le pulse avalanche ener g y  mj i ar avalanche current a e ar repetitive avalanche ener g y  mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  ??? 2.46 c/w r ja junction-to-ambient  ??? 65 300 max. 72 51 290 71 43 6.1 61 27 -55 to + 175 20 0.41 10lb  in (1.1n  m) v dss 100v r ds(on) typ. 3.7m ? max. 4.5m ? i d (silicon limited) 72a
  2 www.irf.com    repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.077mh r g = 25 ? , i as = 43a, v gs =10v. part not recommended for use above this value.  i sd 43a, di/dt 1600a/s, v dd v (br)dss , t j 175c.  pulse width 400s; duty cycle 2%. s d g  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .  when mounted on 1" square pcb (fr-4 or g-10 material). for recom- mended footprint and soldering techniques refer to application note #an-994.   r is measured at t j approximately 90c. static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown volta g e 100 ??? ??? v ? v (br)dss / ? t j breakdown volta g e temp. coefficient ??? 0.11 ??? v/c r ds(on) static drain-to-source on-resistance ??? 3.7 4.5 m ? v gs(th) gate threshold volta g e 2.0 ??? 4.0 v i dss drain-to-source leaka g e current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leaka g e ??? ??? 100 na gate-to-source reverse leaka g e ??? ??? -100 dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units g fs forward transconductance 260 ??? ??? s q g total gate char g e ??? 190 290 nc q gs gate-to-source char g e ??? 40 ??? q gd gate-to-drain ("miller") char g e ??? 49 ??? r g gate resistance ??? 1.3 ??? ? t d(on) turn-on delay time ??? 24 ??? ns t r rise time ??? 58 ??? t d(off) turn-off delay time ??? 81 ??? t f fall time ??? 71 ??? c iss input capacitance ??? 9540 ??? pf c oss output capacitance ??? 680 ??? c rss reverse transfer capacitance ??? 300 ??? c oss eff. (er) effective output capacitance (energy related) ??? 760 ??? c oss eff. (tr) effective output capacitance (time related)  ??? 1120 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 72 a (body diode) i sm pulsed source current ??? ??? 290 (body diode)  v sd diode forward volta g e ??? ??? 1.3 v t rr reverse recovery time ??? 50 75 ns t j = 25c v r = 85v, ??? 60 90 t j = 125c i f = 43a q rr reverse recovery char g e ??? 100 150 nc t j = 25c di/d t = 100a/ s  ??? 140 210 t j = 125c i rrm reverse recovery current ??? 3.5 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is ne g li g ible (turn-on is dominated by ls+ld) i d = 43a r g = 2.6 ? v gs = 10v  v dd = 65v t j = 25c, i s = 43a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250a reference to 25c, i d = 5ma  v gs = 10v, i d = 43a  v ds = v gs , i d = 250a v ds = 100v, v gs = 0v v ds = 100v, v gs = 0v, t j = 125c mosfet symbol showing the v ds = 50v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0mhz v gs = 0v, v ds = 0v to 80v v gs = 0v, v ds = 0v to 80v  conditions v ds = 50v, i d = 43a i d = 43a v gs = 20v v gs = -20v
  www.irf.com 3 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 5.5v 5.0v 4.7v 4.5v 4.2v bottom 4.0v 60s pulse width tj = 25c 4.0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.0v 60s pulse width tj = 175c vgs top 15v 10v 5.5v 5.0v 4.7v 4.5v 4.2v bottom 4.0v 2 3 4 5 6 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v 60s pulse width 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 40 80 120 160 200 240 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v v ds = 50v i d = 43a -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 72a v gs = 10v
  4 www.irf.com fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 1.0 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 70 80 i d , d r a i n c u r r e n t ( a ) -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 90 95 100 105 110 115 120 125 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5ma -20 0 20 40 60 80 100 120 v ds, drain-to-source voltage (v) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 e n e r g y ( j ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 17a 22a bottom 43a 0 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100sec 1msec 10msec dc
  www.irf.com 5 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci= i / ri ci= i / ri 4 4 r 4 r 4 c c 5 5 r 5 r 5 ri (c/w) i (sec) 0.0371 0.000005 0.1159 0.000067 0.2585 0.003980 0.9745 0.228341 1.0740 3.049000 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 10 20 30 40 50 60 70 80 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 43a
  6 www.irf.com   
      fig 16. threshold voltage vs. temperature            
      
        -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/s) 0 5 10 15 20 25 i r r ( a ) i f = 29a v r = 85v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 0 5 10 15 20 25 30 i r r ( a ) i f = 43a v r = 85v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 0 200 400 600 800 1000 1200 1400 q r r ( a ) i f = 29a v r = 85v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 0 200 400 600 800 1000 1200 1400 1600 q r r ( a ) i f = 43a v r = 85v t j = 25c t j = 125c
  www.irf.com 7 fig 22a. switching time test circuit fig 22b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1s duty factor < 0.1% v dd v ds l d d.u.t + - fig 21b. unclamped inductive waveforms fig 21a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 23a. gate charge test circuit fig 23b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 20.    
    for n-channel hexfet   power mosfets 1k vcc dut 0 l 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
 
  + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"   
    
  8 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 01/2011  
      
  to-220 full-pak package outline dimensions are shown in millimeters (inches) to-220 full-pak part marking information to-220ab full-pak package is not recommended for surface mount application. logo as s embled on ww 31, 2010 example: lot code 1234 t his is an irf i4110g wi t h as s e mb l y part number int ernat ional rectifier p031d f i4110g notes: - "p" in assembly line position indi cates "l ead- f r ee" assembly site d week 31 year 0 = 2010 dat e code lot code assembly 12 34 - "g" s uffix in part number i ndi cates "h al ogen- f r ee"


▲Up To Search▲   

 
Price & Availability of IRFI4110GPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X